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A B S T R A C T  

Let c~ E R,e = (~ + o(1))/n and p = ½(1 + ~). Denote by (~  a random 
subgraph of the directed n-dimensional hypercube (~ ,  where each of the 

n2 n directed edges is chosen independently with probability p. Then 

the probability that Q~ is strong-connected tends to exp{-2exp{-c~}}. 
The proof of this main result uses a double-randomization technique. 

Similar techniques may be employed to yield a simpler proof of the known 

analogous result for undirected random graphs on the cube. 

The main result is applied to the analysis of the dynamic behavior 

of asynchronous binary networks. It implies that for almost all random 

binary networks with fixpoints, convergence to a fixpoint is guaranteed. 
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1. I n t r o d u c t i o n  

The threshold probability for connectedness of random undirected graphs and 

behavior in the vicinity of the threshold is well understood, both for the stan- 

dard random graph model G,,,p [5] and for random subgraphs of the cube Q~ 

[3, 6, 1]. The strong-connectedness of random directed graphs has been inves- 

tigated for the standard random graph model G.,p [10], but not for random 

subgraphs of the directed cube QF" For G.,p, Pal~sti [10] has shown that the 

threshold probability of strong-connectedness is the same as that for connected- 

hess in G,,,v , namely p = log n/n ,  and the hitting time of strong-connectedness 

coincides with the hitting time of all vertices having positive indegree and out- 

degree. In this paper, we prove the analogous result for "" Qp, namely that the 

threshold probability of strong-connectedness is p = 1/2 and the hitting time 

of strong-connectedness here also coincides with the hitting time of all vertices 

having positive indegree and outdegree. Behavior for values of p slightly below 

the threshold is investigated using a "double randomization" technique, in which 

the directed edges are selected in two stages. In the first stage, the edges are 

selected with probability slightly less than p. This causes the appearance of large 

strong-connected components and vertices with positive indegree or positive out- 

degree. In the second stage, edges are selected with probability complementing 

to p. This causes the large strong-commcted components to fuse together to one 

enormous strong-connected component. 

Beyond their theoretical value, our results have applications in the field of 

neural-network-type dynamical systems. In his study of networks of binary gates, 

Kauffman [9] introduced the following model: A collection of n binary gates 

are connected in a network such that each gate receives inputs from all others 

(including itself). Each gate has an internal binary state xi and computes a 

specific n-input boolean function fi. The s t a t e  of the network is the binary 

vector x = (xl , . . ,x , , )  E {0,1} n. Temporal dynamics of these networks can 

be observed by updating the network state in time by each gate computing its 

function with the current inputs: 

Xi ~" f i ( x )  

Dynamics regimes can be either synchronous or asynchronous. In a syn- 

chronous regime (Kauffman's original model), the values of all the gates update 

simultaneously. In an asynchronous regime, investigated by Glauber [7], each 
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gate updates independently of the others, subject to the single constraint that all 

processors update at the same average rate. Obviously, any dynanfics in system 

lacking a central clocking mechanism nmst be asynchronous. When the update 

rate is not too rapid, a good approximation to the dynaanics is one in which, 

at each time step, only one random gate updates. The state then moves to an 

adjacent vertex of the hypercube, unless (and until) it reaches a state from which 

there is no exit. In the sequel, we adopt this approximation when investigating 

asynchronous dynamics. 

2. T h e  S t r o n g - C o n n e c t e d n e s s  T h r e s h o l d  

Denote by Qn the undirected cube and by 0 n the directed cube. A vertex x E O n 

is a source  if it has zero indegree and non-zero outdegree, a s ink if it has zero 

outdegree and non-zero indegree, semi- iso la ted  if it is a source or a sink and 

isolated if it has zero indegree and outdegree. 

We begin with a series of lemmas. The first is a simple extension of the 

isoperimetric inequality for the vertex boundary in the cube (the case l = 1). 

LEMMA 1: ([2] p. 129) For every set A C Qn with IAI > El=0 ('/'), there are at 
least v "r+t z..,i=0 ('~) vertices of Q" within distance I of A. 

The next lemma is the standard isoperimetric inequality for the edge boundary 

in the cube. 

LEMMA 2: ([2] p. 125) For every set A C Q" with IAI >_ k, the number of edges 

connect ing A and 0 "  - A is at le t k(n - [log  k]). 

LEMMA 3: In Q" there are at most (4en) k-I trees of order k that contain a 

given vertex. 

Proof." Let T be a tree of order k in Q" containing a given vertex v. Denote 

by mj ,  j = 1, .., k - 1 the munber of vertices in T at distance j from v. Then 

~¢k__-~ me = k - 1, where mk-i  > 1. The munber of different trees containing 

precisely m i vertices at distance j from v is not more than 

Since, in general, 

( : l ) ( m l ( n - 1 ) ) ' " ( m k - 2 ( n - 1 ) )  \ mk-1 

1"I li ~ , E l i ] '  
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and summing over all partitions of k - I into mj gives a factor of 2 2(k-I) at most, 

k-2 

of order k containing v) < 22(k-1) ( n  + (n - 1) • j= l  mj~ #(trees -- ~k k~l 
E j = I  '/'/'J ) 

<- 22(k-1)( n+(n-1)(k-2))k-1 

< (4en) k-a. | 

The next lemma maintains that if A and B are large enough subsets of Qn, 

there are many short edge-disjoint paths connecting them. 

LEMMA 4: For every constant c > 0 there is a constant co > 0 such that 
ff A and B are subsets of Q n, each containing at least 2n/n c vertices, asad 1 = 

c0(log2 n)l/2n 1/2, then Q" contains at least 2 "-211°g2" edge disjoint A - B  paths, 

each having length at most [lJ. 

Proof." In proving the lemma, we may, and shall assume that n is sufficiently 

large. Let co > 0 be such that the resulting I and r = In/2 - I/3] satisfy 

i=0 

Since, by a generous upper bound on the tail of tlle binomial distribution, 

< 2  / ' 
i=rarl+ l "= 

then, by Lemma 1, the set D of vertices at distance < I from A, contains at least 

(,:) Z = 2" - 
i=0 i=rWl-t-I 

>_ 2"(1 - V 2 n  c) 

vertices. At least 2n/2n c of these vertices must be in B. Denote B0 = BDD.  By 

considering, for each z E B0, an appropriate shortest path to A, we can find a 

set of vertex-disjoint trees in Q n  each tree rooted in A, having height at most l, 

such that these trees cover B0. A tree whose root has degree d contains d paths 

from A to B, sharing only the root. Such a tree covers at most n z vertices of 

B, hence there are at least IBI/n t edge-disjoint A - B paths of length at most I. 

Finally, because l > c for sufficiently large n, 

IBI/n t > 2 n-211°g2 ". II 
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We are now ready to state the central result of this paper. 

THEOREM 1: Let p = ½(1 - e), where 0 < e < loglogn/n. Ahnost every Q~ is 

such that i f  x is not a sink and y is not a source, then Q'p~ contains an oriented 

path from x to y. 

Proof." We shall construct 0~, in two stages. Let p0 = }(1 - co) be such that 

( 1  - po)(1 - 1In 2) = 1 - p. First we select edges with probability p0 to obtain 

Q~, and then add edges independently with probability 1In 2 to obtain 0~. Note 

that, by definition, (1 + co)" _< 21ogn. 

Let Xk = Xk(Q~0) be the number of vertices from which exactly k vertices can 

be reached, and let Y~ = Yk(Q~,) be the number of vertices that can be reached 

from exactly k vertices (through oriented paths in Qp'o)" Using Lemmas 2 and 3, 

with q0 = 1 - po we have 

Ek = E(Xk) = E(Yk) 
- n ~ -  xk-1 k - l _ k ( n - l o g 2 k )  

_< z (,~en) P0 q0 

Denote k0 = L2"/nq. Since k2 "/k _< 2" /n  ~ for 2 _< k _< k0 and (2q0)" = 

(1 + e0)n _< 21ogn, we see that, very crudely, 

ko ko 

E Z~ < 4e E ( l o g n / n ) k  = o(1).  
k=2 k=2 

In particular, by the Markov inequality, the event [Xk = Yk = 0 for all 2 < k < k0] 

occurs with probability at least 1 - o(1). Also, E~ = (1 + e0)" _< 21ogn, so 

X1 _< log 2 n and Y1 _< log 2 n with probability at least 1 - 2/ log n (in fact, with 

considerably greater probability). 

To complete the proof, it suffices to show that " %' X ~'~ _ if Qpo is such that l(Qp0 ) < 

log 2 n, YI(Q~o) -< l°g 2n and Xk(Q~o ) = Yk(Q~0 ) = 0 for all 2 _< k _< k0, then 

the graph Q~ obtained from Q~0 by adding edges with 1)rol)al)ility 1/n 2 has the 

property required by the theorem with probability 1 - o(1). Indeed, suppose 

that Q~0 is such. Given x, y E Qp~o, a source and sink respectively, what is the 

probability that the new edges creating 4 Qp, added with 1)robability 1/n ~, do 

not ensure that Q;~ contains a directed path frmn x to y ? Let A be the set of 

vertices that can be reached from x and let B be the set of vertices from which 

y can he reached. By the preceding discussion, [At >_ 2"/n  a and [B[ >_ 2"/n  a, 
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both  with probabil i ty 1 - o(1), so Lemma 4 implies that ,  ra ther  crudely, there 

are at  least m = 2 n-n~12 l°g2" edge-disjoint A - B paths,  each of length at most  

l = ! n  1/2 logn.  The  probabil i ty that  we do not select all edges of at least one of 2"" 

these paths  is at most  

(1 - -  n--21) m <~__ e x p { - m n  -21} 

_< exp{-2n-2nl /21°g2"} . 

The  probabil i ty tha t  some such pair (x, y) will not be joined by a directed pa th  

{~  is at most  in 

22, exp{_2n-~n  ~/2 tog n } < exp{_2n/2} . 

what  is the probabil i ty tha t  there is an senti-isolated vertex x E (~0 for Finally, 

which we add an edge x~y or y~ during tile second randomizat ion ? It is at most  

log 2 n[1 - (1 - 1/n~) 2n] = O(log 2 n/n)  = o(1). | 

Let us s tate  two immedia te  corollaries of Theorem 1: 

THEOREM 2: Almost every random directed cube process is such that the 

hitting time of  strong connectedness is precisely the hitting time of all vertices 

having positive indegree and outdegree. 

THEOREM 3: Let ce E R, e = (a+o(1) ) /n and p = ½(l+e) .  Then the probability 

that --6"- is strong connected tends to e x p { - 2  e x p { - a } } .  

3. Applications to Binary Networks 

Let {fi : {0,1} n ~ {0,1} : i = 1 , . . ,n}  be n-input  boolean functions. Denote  

x = ( x l , . . , x , )  and F = ( f l , . . , f , ) .  F induces a Markov chain on {0,1}" with 

the following transi t ion probabilities: 

Prob[(xa,  .., xi, .., x , )  -----* (xa, .., ~/, .., x,,)] = 1/n 
(1) 

iff yi(xa, ..,xi, .., x , )  = ffTi 

(~i is the binary complement  of xi). In general, a vertex x will have d(x,  F ( x ) )  

t ransi t ions out  of it, where d ( x , y )  is the Hamming  distaalce between x and y.  

There  is a probabil i ty (1 a(x,F(x))) . of staying in place. Tlle t r a n s i t i o n  g r a p h  

of the Markov chain is the subgraph of Q" where an edge appears  if it has a 

non-zero transi t ion probability. F i x p o i n t s  are vertices x for which x = F(x) ,  
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or equivalently, Prob[x ----* x] = 1. These fixpoints are also a t t r a c t o r s  of the 

network dynamics, in the sense that many dynanfic trajectories terminate in 

these states. Denote by Nn a random element in the space of all possible binary 

networks of n gates (all different possibilities of gate functions). The number of 

fixpoints of N ,  is asymptotically Poisson distributed with A = 1, hence 

(2) lim Prob [Nn has at least one I ixpoint  ] = 1 - exp{-1} 
n - - - - - *  o 0  

In his much-quoted paper on recursive neurM networks, a special case of binary 

networks, where the gate functions are restricted to be ]illear threshold func- 

tions, Hopfield [8] showed that if the threshold weight matrix is symmetric, rapid 

convergence to fixpoints is guaranteed. Simulation results of Crisanti and Som- 

polinsky [4] indicate that convergence is guarmlteed for most neural networks, 

even when the weight matrix is not symmetric. We now show that alnmst all Nn 

have this property. 

THEOREM 4: Say that Nn is convergen t  if there is a trajectory fi'om any vertex 

of {0, 1} n to a fixpoint. Then 

(3) lira Prob IN,, is convergent I N ,  has at least one f ixpoint  ] = 1 
n - - - - - ~  o 0  

Proof." The transition graph of Nn is a subgraph of Q ' .  It is easily seen that 

there is a one-to-one correspondence between Q'~ and the class of all possible 
2 

transition graphs of Nn. In the language of rando,n graphs, a fixpoint is a sink. 

By Theorems 2 and 3, a typical transition graph of Nn consists of an enormous 

strong-connected component and a few sources and sinks. There are no isolated 

vertices. Theorem 1 shows explicitly that there exists a series of transitions 

between any vertex and fixpoint. | 

4. E x t e n s i o n s  

Very little has to be changed to obtain the analogues of Theorems 1-3 for undi- 

rected random subgraphs of the cube. The proofs obtained in that way are 

considerably simpler than the original proofs of these results [3, 6, 1]. In- 

deed, the analogue of Theorem 1 will state: Almost every Q~ is such that if 

deg(x/) > 1, i = 1,2, then Q~ contains a path from zl to x2. The proof will 

state that the components of xi in Qp'0 are of size 2" /n  3, while a sprinkling of 
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edges, with probability 1/n 2, will fuse together these components (all claims with 

probability 1 - o(1)). 
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